HEREDITY OF BODY COLOR IN DROSOPHILA T. H. MORGAN, 1912 Journal of Experimental Zoology PLATE 1 EXPLANATION OF FIGURES 1 2 A black female. 3 A brown female. 4 A yellow female. Normal or gray female (the outer marginal vein is slightly exaggerated in the figure). The contrast between the black, yellow, and brown flies is well brought out in the figures

HEREDITY OF BODY COLOR IN DROSOPHILA
T. H. MORGAN, 1912 Journal of Experimental Zoology
PLATE 1
EXPLANATION OF FIGURES
1. A normal female
2 A black female.
3 A brown female.
4 A yellow female.
Normal or gray female (the outer marginal vein is slightly exaggerated in
the figure).
The contrast between the black, yellow, and brown flies
is well brought out in the figures

These beautiful and historic drawings are from an early paper by the famous geneticist Thomas Hunt Morgan.  The many papers that he published helped establish modern-day genetics (not just insect genetics but ALL genetics).  These works and the other 150,000 papers on the various aspects of Drosophila genetics would not have been possible if it were not for the pioneering work of Delcourt, Baumberger, Guyenot, and other rearing pioneers.

Baumberger, J. P.  1917a. The food of Drosophila melanogaster Meigen.  Proceedings of the National Academy of Sciences of the United States of America: 3: 122-126.

Baumberger, J.P.  1917b. Solid media for rearing Drosophila.  American Naturalist.  51: 447-448.

Delcourt, A. and E. Guyenot. 1910. The possibility of studying certain Diptera in a defined environment. Comptes rendus hebdomadaires des séances de l’Académie des sciences (0001-4036), 151, p. 255-257.

Guyenot, E.  1913a. A biological study of a Drosophila ampelophila Low fly I – The possibility of an aseptic life for an individual and the line.  Comptes rendus des séances de la Société de biologie et de ses filiales (0037-9026), 74, p. 97-99.